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Abstract-In many practical situations a cracked component may be subjected to mixed mode
deformations. One important situation where this is relevant is surface cracked tubular joints applied
in the offshore industry. Mixed mode affects both the defonnation characteristics and fracture
initiation capacity of the component, hence, an analysis model for numerical simulation should
account for this. A finite element model consisting of solid elements is one approach to solve such
problems. For complex components like a tubular joint, a very efficient model is obtained by means
of shell finite elements. The cracked sections may be accounted for, utilizing line spring elements.
Earlier work has concentrated on the Mode I deformation of the line spring. In the present study a
mixed mode 1/11 elastic-plastic line spring is derived. The performance of the simple model is
compared to continuum solutions obtained by means of detailed plane strain FE analyses. Both
load vs deformation and J-integral performance of the line spring are considered in the comparisons.
Copyright CO 1996 Elsevier Science Ltd.

INTRODUCTION

Nonlinear fracture mechanics has developed into an engineering tool due to the need
for assessing defects in critical components loaded into the elastic-plastic regime. The
methodology has been applied extensively in analysis of pressure vessels. For simple crack
geometries and nonlinear elastic material behaviour (power hardening), there exist tabu­
lated solutions of crack tip load parameters like the J-integral vs external loading (Rice,
1968a, Shih and Hutchinson, 1976, Goldman and Hutchinson, 1975, Shih et al., 1981).
This enables a rapid check of crack criticality, if Japplicd < Jeriliml a safe condition is confirmed.

Due to the geometric stress concentrations in tubular joints in offshore steel platforms,
it is not seldom that surface cracks develop in the hot spots. The cracks are mainly caused
by the fatigue damage accumulation process due to the cyclic environmental loads, and are
typically located at the weld toe of the welds joining the chord and brace members. When
the cracks are discovered by inspection, it is important to be able to predict possible further
growth in order to decide convenient repair timing. First, a fatigue crack growth prediction
is necessary. In this respect the linear elastic fracture mechanics concepts may be applied.
Second, the behaviour of the crack during an overload (e.g., an extreme storm) has to be
known in order to predict possible brittle/ductile fractures. If a brittle fracture of a heavily
loaded joint should occur, insufficient structural safety against global collapse may be the
result. Ductile fracture is more beneficial, as significant load carrying capability may still
be maintained during a stable crack tearing process. Recently, the nonlinear fracture
mechanics methodology has been investigated for capacity assessments of cracked tubular
joints (Skallerud et al., 1994, Skallerud, 1995, Cheaitani and Burdekin, 1994). Even for
intact braces and chords the stress transmittal between them is complex, and introducing
cracks in the brace/chord intersection further complicates this picture.

A large amount of research over the last years has been focused on triaxiality effects
on the stress and strain fields in the crack region, and the corresponding effect on initiation
and growth of the crack. Important results have emerged, e.g., lack of constraint in cracked
regions in components loaded with predominant tension in the ligament, and variation of
hydrostatic stress along the crack front of semi-elliptical surface cracks (McMeeking and
Parks, 1979, Shih and German, 1982, Brocks et al., 1988). These results have mainly been
obtained for simple geometries like flat plates, with much simpler stress conditions than
those in a tubular joint.
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The most important feature of the J-integral is its ability to describe the magnitude of
the crack tip stress and strain field (Hutchinson, 1968, Rice and Rosengren, 1968). The
asymptotic analysis at the crack tip leads to the HRR-fields given by
£'j X (Jjr)n/n+ 1 • £;JO; n), (J'I X (Jlr) In+ 1 • (J;;(O; n), where r, 0 are the polar coordinates relative
to the undeformed crack tip; £;; and (J;; are dimensionless functions, n is the hardening
exponent in a power hardening material

Current research expands the theory to account for the first non-singular term in the power
series solution (Betegon and Hancock, 1991, O'Dowd and Shih, 1992, Chao et al., 1994).
The above work has, however, concentrated on Mode I deformations of the crack, i.e., the
opening mode. In many practical situations Mode II (sliding) and Mode III (tearing) also
occur, and should be accounted for. Shih (1974) has extended the HRR solution to account
for Mode 1 and II in small scale yielding. Skallerud (1995) points out the significant Mode
II in surface cracked tubular joints. Cheaitani and Burdekin (1994) address the large Mode
III when the crack becomes through thickness in such joints. As analyses of cracked tubular
joints are essential regarding the assessment of the offshore platform safety, the problem of
mixed mode has to be addressed.

The present investigation is directed towards the Mode I/II combination, and hence is
relevant for surface cracked tubular joints. The motivation stems from the fact that mixed
mode loading leads to mixed mode contributions in the J-integral. If one assumes self­
similar crack growth for a cracked plate in plane stress, the material being perfectly plastic,
the Dugdale model gives the connection between J and the crack tip opening displacement
in Mode I and II :

(1)

In combined loading, and self-similar crack growth, the total J may be assumed to be
J1.p+JII.p- Separation of J-type of parameters into Mode I and II by means of the cor­
responding deformations has been employed by Ishikawa et al. (1979) for elastic material,
and by Aoki et al. (1990) for elastic-plastic material. In plane strain JI.p relates to the crack
tip opening displacement by means of a constraint factor Tn that depends on crack geometry,
loading, and hardening conditions in the ligament, i.e., JI.p = Tn(J)\crackt;p (Shih, 1981).

For linear elastic materials the combined J is expressed via the stress intensity factors
as

(2)

E' is Young's modulus in plane stress and EI I - v2 in plane strain.
Kishimoto et al. (1980) have derived a general expression for J, denoted 1, that

accounts for elastic-plastic material in the incremental sense and crack growth out of the
plane given by the initial crack. Simplifying to isothermal conditions and small scale
yielding, with vanishing body forces, the generalized relationship reads:

1 = 11 cos (J +12 sin ()

(k = 1,2)

(3)

r is any counter clockwise path surrounding the crack tip, A is the area enclosed by r, and
() is the crack increment angle with respect to the original crack axis. We is the elastic strain
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energy density. One notes that for elastic material and e= 0, J = 1. Furthermore, in mixed
mode loading, contributions of Mode I and II will occur in both Jb cf. also eqns (I) and
(2). Hence, irrespective of whether one assumes self-similar crack growth or not, the i or J
employed in a fracture assessment contains mixed mode contributions.

In some commercial software codes calculation of i is implemented, and is determined
by means of the virtual crack extension method combined with plane stress/strain elements
or solid elements (Parks, 1974, Li et al., 1985). With this, an account of mixed mode is
obtained. For a three-dimensional surface crack in a complex component like a tubular
joint the work in generating FE-meshes with solid elements is substantial. Usually, the
number of elements through thickness in the brace/chord intersection region is kept low in
order to have manageable problem sizes. This may introduce inaccuracies in the i-integral
computation irrespective of the potential of computing accurate i-integrals for a finer mesh.
A very convenient way ofanalyzing shell type of structures with surface flaws, and obtaining
i-integrals, is the combination of shell and line spring finite elements (Rice and Levy, 1972,
Parks, 1981, Parks and White, 1982). The reduction in the number of unknowns in the
structural equation system given by the incremental principle of virtual work is large
compared to a solid FE model. The effort in mesh generation is also reduced significantly.
As the edge crack is the basic case for the line spring, computed values of a line spring
based i for a surface crack will be more accurate in the center compared to positions
approaching the surface at the crack ends. However, good accuracy of calculated i-values,
both elastic and plastic, for semi-elliptical surface cracked shells have been obtained (Parks
and White, 1982, White et al., 1983, Shiratori and Miyoshi, 1983, Huang and Hancock,
1988). Although the i-values calculated by means of the line spring account for Modes I,
II, III elastically, only Mode I is accounted for plastically. This model deficiency is addressed
in the present study. An elastic-plastic line spring accounting for Mode I and II is derived,
motivated by the efficient computer analysis obtained by such a method, and the need for
accounting for mixed mode contributions in fracture assessments. First, the simple mixed
mode inelastic line spring model is derived. Then some simulations are discussed, presenting
quantitative and qualitative features of the model. The results are compared to continuum
solutions of mixed mode loaded flat plates with cracks, analyzed by means of the program
ABAQUS (Hibbitt et al., 1992). Finally, some improvements of the model are pointed out.

LINE SPRING MODEL

Elastic stif/iwss
Figure I illustrates the main concepts of the line spring approach. Taking an inter­

section at some x-coordinate, the surface crack is simplified by an edge cracked strip with
the same remaining ligament as for the surface crack at the same coordinate. The crack
leads to additional deformations in the shell, denoted 6, 8, ~ for the axial, rotation, and
shear deformation, respectively. The work conjugate forces are denoted N, M, V. Figure Ic
shows the line spring for bending, continuously distributed along the x-axis, discretized to

(r-

a

-.,;)~__a_(_x)---! j_--:
(c)

FE-model

Fig. I. Line spring concepts.
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nodal values by, e.g., means of the principle of virtual work, hence compatible with the
actual shell FE-formulation (8 nodes shown). Rice and Levy (1972) derived the elastic line
spring for the extensional and rotational degrees of freedom. In the present study, shear
deformations are also included. In order to obtain the elastic compliance of the cracked
section, the concept of energy release rate is employed. In a load controlled situation the
energy release rate is :

oq.
,p - 1 Q ~' (. - I 2 3):; -:2 i oa ' 1 - , ,

Q = [N,M, vy,q = [b,e,~F

The elastic compliance of the cracked section connects the deformations and loads by :

b = CNNN+CNMM

e= CMNN+CMMM

r; = CvvV

(4)

(5)

Here it is assumed no influence of shear deformations on extension and rotation, and vice
versa. Now eqn (4) becomes:

I(JCw aC' 11 ac l1 ./ ac.,")
~/j = - N2~"_" +2NM-~"-' +M2~~_'-" + V2_~'-

2 Ja oa oa oa
(6)

Additionally, one has from fracture mechanics theory the connection between '§ and stress
intensity factors. This leads to the elastic compliances in the following way:

:.J. = a/l

(8)

2n: fa
CMM = -,-1-4 af~ da

E 3j,t 0

2n: fa
CNM = -1- afNfl1 da

E' 1 .
6t' 0

2n: fa 0

C vv = -.- afNda
E't2

0
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The j; (i = N, M, V) factors account for the effect of finite thickness on the crack tip stress
field, and are determined by Gross and Srawley (1965) (note thatfv = I~). Other factors
exist, and may be applied in a similar way.

As most FE codes are based on a displacement formulation, the stiffness is used. This
is obtained by inverting the compliance matrix:

(9)

Plastic interaction sUI/ace
Rice (1972) has derived a yield surface for the ligament in Mode I loading (N, M),

based on slip line theory for deep cracks, and a ligament loaded predominantly in tension,
i.e., an upper bound solution:

[

N ·2

--0.3
. 2Iv C M+N(t-c)0.5 2

f(N,M;TI'C) = '0.7 +9[ 2T,C2 J-1 (10)

Here I y is the shear yield stress, and c is the remaining ligament size. Lee and Parks (1993)
have further computed Mode I yield surfaces for general load combinations (M, N) and
crack depths. For mixed mode loading the slip line field is complicated, and an upper bound
solution analogous to eqn (10) is not known to the author. In this study a lower bound
solution is employed due to its simplicity. It follows the approach by Merkle and Corten
(1974), but also includes shear force (Mode II). By assuming the outer parts of the ligament
carries the bending moment, and central part carries axial and shear force, the lower bound
yield surface reads

. [NJ2 [M +N(t-C)0.5J [VJ2j(N, M, V, (Jy; c) = N
p

+ M
p

+ V
p

-1

(Jv
V =-' CP)3 (11 )

Figure 2 depicts the yield surfaces given by eqns (10) and (11) in the first octant, with V = 0
for the latter. In Fig. 2a the uniaxial yield stress applied in the lower bound yield surface is
multiplied by 2/J3 in order to account for plane strain, whereas in Fig. 2b the yield stress
is multiplied by 1.26*2/)3 in order to account for the increased stress due to the crack
(Green and Hundy, 1956). The factor 1.26 is derived for a ligament in dominating bending
and for N approximately less than 0.5(J,c. In Fig. 2b the factor is utilised for ligaments with
higher axial loads also. It is clear that plasticity will develop earlier for the lower bound
solution, but the lower bound solution in Fig. 2b matches the upper bound curves quite
well for aft > 0.25. Effects of this are addressed subsequently. Equation (10) is not intended
for use in dominating bending, hence is the comparison for this case not representative;
e.g., in ABAQUS the surface is modified for such cases. Furthermore, the factor 1.26 is
only valid for deep cracks, and should not be utilised for alt < 0.25.

Elastic-plastic stiffness
The derivation of the elastic-plastic stiffness of the mixed mode line spring follows

classical plasticity theory, i.e., assuming an additive decomposition of the elastic and plastic
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Fig. 2. Comparison of upper and lower bound yield surfaces (Mode I only).

line spring deformation increment, associated flow rule, plastic consistency, and an isotropic
hardening rule:

dq = dqe+dqp

of
dqp = dq aQ

of of
df = aQ "dQ+ o(Jy d(Jy = 0 (12)
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(13)

The hardening rule is obtained by the argument that the plastic work increment of the
stress resultants is equal to the continuum work increment integrated over the plastified
ligament region:

d Wp = Q . dqp = f (Je" dep .e" dA
Ap1o.\/I(

(14)

Following Parks and White (1982), they argue that the continuum work is proportional to
the averaged yield stress over the ligament multiplied by some plastically deforming area
governed by ligament size, and they introduce a proportionality factor, denoted k herein:

at' dO', n

d Wp = Q.dq aQ = kO', E
p

c (15)

Knowing the current plastic modulus E
1
" dO', is expressed in terms of dq, and is inserted in

eqn (12). Solving for dq the elastic-plastic stiffness reads:

(16)

From the slip line field solution Parks and White argue that the exponent n l is 2 and the k­
factor of order unity. The value of k is investigated subsequently, combined with n' = 2.
Equation (16) is on a form that readily is implemented in a FE-shell code based on
displacement formulation. Note that although De has no interrelation between Mode I
(N, M) and Mode II (V), Dep does.

I-integral calculation
The elastic part of the mixed mode I may be determined directly from the current load

level:

(17)

The plastic part is more difficult to obtain. As mentioned in the Introduction the Mode I
plastic I may be derived from the crack tip opening displacement, provided a correction
due to constraint, ligament load characteristics, and hardening is taken into account. In
incremental form this reads:

dII,p = mO'l' dbl.eraektlF.p (18)

It is known from analytical studies (Rice, 1975) that m is close to unity for ligaments
predominantly loaded in tension, whereas for predominant bending of the ligament m
approximately equals 2. Parks and White (1982) utilize the fact that the load vector should
lie on the yield surface during crack growth
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(dfl _0)
de 'Ii-

and a constant ratio of plastic deformations during crack growth

This leads to two equations with two unknowns,

aN
ae

and

aM
ae '

that are used in the calculation of the plastic part of 1. The following relationship for Jp

holds in perfect plasticity (Rice, 1968b):

(19)

The plastic crack tip opening displacement may be obtained from the slip line solution
combined with the plastic extension and rotation increment of the ligament (Parks and
White, 1982) :

(20)

Hence, combining eqns (19) and (20), an Tn that varied between 1 and 2 was obtained. Lee
and Parks (1993) have checked the validity of eqn (20), and found that for shallow cracks
(alt < 0.3) it overpredicts the crack tip opening displacement. Applying this method in
order to determine Tn in combination with the lower bound yield surface does not lead to
Tn varying in this range. A simple interpolation based on numerical testing is chosen here
for Tn, simply:

(21)

M' is the sum of bending and the moment due to the axial load eccentricity. In pure
ligament tension Tn = 1, and for increasing ligament bending Tn approaches 2. Shih (1981)
has investigated the values of Tn for different hardening in HRR fields and large scale
yielding (where component geometry may become influential). It is shown that for ligaments
in predominant bending the large scale yielding value of Tn approximately equals the HRR
value, i.e. ::::: 2, for low hardening materials (n > 8). Furthermore, for increasing axial load
in the ligament Tn approaches I for low hardening materials. In order to assess eqn (21),
the estimation relationships determined by Shih and Needleman (1984) are utilised.
Assuming that J = Tna/)t;p and bt;p = b + (t12 -a)8 for a deformation plastic material,
employing the relationships for J, b, e from Shih and Needleman (1984) for an axially
loaded plate in plane strain, the following results represent Tn in terms of axial displacement
for n = 10: 1.44bo',2.22bo',2.46fJoI, for alt = 0.25,0.5,0.75, respectively. As seen from
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Fig. 3. Comparison of constraint factor m determined by eqn (21) and estimation procedures.

Fig. 3 the constraint depends on load level and degree of ligament bending, but eqn (21)
approximates m reasonably for moderate plasticity. However, tabulated results as derived
by Shih and Needleman (1984) may be utilised in improving the constraint calculation.

Extending to Mode II also, one could envisage a constraint factor mIl' Without detailed
knowledge for this variable, the Mode I constraint factor is assumed for Mode II in this
investigation. Hence, the total plastic J-increment is calculated from:

(22)

By updating the deformation increment and yield stress due to hardening, the total J is
determined, containing both elastic and plastic Mode I and II contributions. Note that,
although the ligament deformation pattern due to the lower bound yield surface differs from
the slip line deformation pattern, the connection between crack tip opening displacement and
ligament deformations from the slip line field is employed as representative in calculating
the Mode I plastic J in the present study. Furthermore, the interaction between normal
stress and shear stress on plastic deformation in the ligament is neglected in eqn (22). For
example for the von Mises yield surface in plane stress, the maximum overprediction in
yield axial and shear stress is approximately 30%.

RESULTS

Calibration in Mode I, comparison with estimation procedures
First, the line spring model is investigated for Mode I only. The tabulated solutions

for plane strain edge cracked strips loaded in tension and bending determined by Shih and
Needleman (1984) are used as estimates for accurate fully plastic solutions. Hence, the
quantitative performance of the line spring in large scale yielding is assessed. As modern
structural steels usually are very ductile, fully plastic ligaments develop before fracture
initiation. Therefore, the behavior of the line spring model should be representative for the
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actual behaviour in this regime. Three different crack depths and two hardening levels are
investigated (a/t = 0.25,0.5,0.75, and n = 5,10). The two stress-strain curves are fit by
four-linear curves, then the multilinear fits are applied in the line spring analyses.

Figure 4a shows the axial load vs axial displacement (normalised by (Jyt and (Jyt/E,
respectively) for the low hardening material and aft = 0.5. The line spring is elastic-plastic,
therefore the initial stiffness in the estimation procedure and the line spring differs (as it
should). Approaching fully plastic conditions the line spring model with k = 0.2 and a yield
surface (J) multiplied with 1.26*2/)3 matches the analytical result excellently. If (J) only is
corrected for plane strain (2/)3), use of the lower value k = 0.02 is better than k = 0.2.
Figures 4b and c illustrate J vs axial load and axial displacement, res))ectively (J normalised
by (J~t/E). One observes that utilising k = 0.2 and (J): = 1.26*2/J3(Jy in the yield surface
gives a good approximation for the estimation curves, whereas for k = 0.02 and (Jv: = 2/
)3(Jp J vs N is overpredicted and the accuracy of the line spring J vs axial displace~ent is
acceptable. The deviation between the analytical results and the line spring results in the
elastic-plastic transition may be reduced by improving the fit of the stress-strain curve
applied in the line spring analyses to the power hardening material model employed in the
analytical model

In Fig. 5 results for a highly hardening material are plotted. For the axial load vs axial
displacement behaviour it is observed that correcting the yield stress in the lower bound
yield surface with 1.26*2/)3 combined with k = 0.2 corresponds reasonably to the ana­
lytical result, except for the elastic-plastic transition region, where an improved stress-strain
curve fit would remedy the inaccuracy. Furthermore, if the yield stress only is multiplied
with 2/)3, k = 0.02 gives a too stiff line spring, and k = 0.2 gives a too flexible spring.
hence, a k-value between 0.02 and 0.2 will give a reasonable line spring response prediction.
Figure 5b accentuates that the line spring stress-strain curve should be fitted more accurately
as the graph presents J values in the elastic-plastic transition region. The model parameter
pair (k = 0.2, 1.26*2/)3(Jy) gives, however, acceptable results in the fully plastic regime.
For the J vs axial displacement plots in Fig. 5c, the corresponding line spring results slightly
underpredict the estimation result (and will improve for a better stress-strain curve fit),
whereas (k = 0.2, 2/)3(Jy) gives a good correspondence to the estimation curve.

Figure 6 shows the performance of the line spring for a deep crack and a low hardenin,g
material. Again, correcting the lower bound yield surface yield stress with 1.26*2/J3
combined with k = 0.2 gives good correspondence to the analytical results, although there
is conservative J vs displacement behaviour.

For the case aft = 0.25 applying the factor 1.26 in correcting the yield surface yield
stress is not acceptable, as the crack is too shallow. Hence, the line spring results in Fig. 7
contain only the correction 2/)3 in the yield surface yield stress. For k = 0.2 the axial load
versus axial displacement behaviour is acceptable, k = 0.02 leads to too stiff response. A k­
value of 0.1 will improve the result. The overprediction in J vs axial load in Fig. 7b is
significant for k = 0.2, where for J vs displacement a good correspondence is obtained.
For the low hardening material results plotted in Fig. 8, k = 0.02 gives a good stiffness
representation. However, the J integral is overestimated by the line spring method.

From the above Mode I investigation it may be concluded that for aft > 0.25, com­
bining k = 0.2 with 1.26*2/)3(J,. as yield stress in the yield surface gives acceptable cor­
respondence to the estimation solutions derived by Shih and Needleman (1984). The line
spring results may further be improved by refining the stress-strain curve emplo)'ed (four
linear segments). For alt = 0.25 the yield stress was only multiplied with 2/J3. k = 0.2
and 0.02 gave reasonable results regarding load vs deformation for the high and low
hardening material, respectively. For such shallow cracks, however, an improved J cal­
culation would require a more accurate relationship between the ligament deformations
and the crack opening displacement than that given by eqn (20) (Lee and Parks, 1993).

Effect of Mode II
Figure 9 shows the effect of different levels of shear loading, leading to Mode II

deformation, on the calculated response. The shear is applied proportionally to the axial
force, V = rv' N. The material is low hardening (n = 10), and aft = 0.5. One sees that in



Mixed mode IIII spring 4153

1.2 ,...-----~-----"'"T""-----.._----~-----_._----__,

"0
ell

..Q
"iii
'x
ell

"0
Q)

.~

"iii
Eo
z

( a )

O.B

0.6

Shih and Needleman
k =0.2 ---------­
k = 0.02 -.--.-.__.

cry ·1.26 21-.13 in yield surface, k =0.2 -- -- -- -- -- --

----------------------

OL- .......L ...L. "'- .......L ...L. --'

o 5 10 1 5 20 25 30

Normalized axial displacement

Shih and Needleman
k =0.2 -------­
k =0.02 -.-.-.-.-

cry '1.26 21-.13 in yield surface, k =0.2 -- -- -- -- .

30

~
Cl ( b )Q) 25
'E
"....,
"0 20
Q)

~
ell
E '5
~

0
Z

'0

5

0
0 0.2 0.4 0.6 0.8 1.2

Normalized axial load

30252015

Shih and Needleman
k =0.2 ---------­
k =0.02 -.-. _. -.__.

cry '1.26 21-.13 in yield surface, k = 0.2 -- -- -- -- -- --

'05

( c )

30

~
Cl
2 25
l::

"....,
"0 20
Q)

.~
"iii
E 15...
0

Z
'0

5

0
0

Normalized axial displacement

Fig. 4. Calibration of line spring model (Mode I), a/I = 0.5. IJ = 10.



4154 B. Skallerud

1.2 ,-------,--------,c--------,------,------------,

0.8

0.8

0.4

0.2

( a)
>.....:: -

----_ __ .'

Shih and Needleman
k = 0.2 -------­
k =0.02 -.-.-.-.-

cry ·1.26 2/-.J3 in yield surface, k =0.02 -- -- -- -- ­
cr.. 1.262/-.J3 in yield surface, k =0.2 --- ---

oL------'-------'-------'::-------=-----7.:---------:!o 5, 10 1 5 20 25 30

Normalized axial displacement

1.41.20.8

!
I

;'

0.80.4

I

!
i
f
I ./

1/
I /'1/ Shih and Needleman

J k =0.2 --------
/) .f'{/' k =0.02 -'-'-'-'-
// .'/C... ~. cry ·1.26 2/-.J3 in yield surface. k =0.02 --x-- --x-- -

_.::?~:::::-::..... cry '1.26 2/-.J3 in yield surface, k =0.2 --~--o---

l!! 50
Cl
oS 45 ( b )c....., 40

"(I) 35
.!::!
«i 30
E
l-
e 25

Z
20

15

10

5

a
a 0.2

Normalized axial load

Shih and Needleman
k =0.2 -------­
k = 0.02 -.-._._.-

cry '1.26 2/-.J3 in yield surface, k =0.02 -- -- -- -- ­
cry '1.26 2/"3 in yield surface, k =0.2 --- --- ---

~
30

/./ !

( c ) /: I
Cl /1 ./
(I)

/!>' !'E 25 i.. .. /..., !, I

"
,//'

(I) 20 i:

.!::! /./
«i //
E H'l-
e
Z

10

5

10 15 20 25 30

Normalized axial displacement

Fig. 5. Calibration of line spring model (Mode I), alt = 0.5, n = 5.



Mixed mode l/II spring 4155

0.:3 r------r------,.------r-----...,...------.-------,
""0
l'G

..Q

"iii
'x
l'G

""0
Q)

.!::!
"iii
E
o
z

0.25

0.2

0.15

0.1

0.05

( a)
Shih and Needleman'----­

k = 0.02 ----------
k=0.2 _.-_._._-'

cry' 1.26 2/"-.13 in yield surface, k =0.2 --- --- -- ---

-----------------
--------_._-------------------_. -- --_.- - _.- ._.-

oL...-----'-----......L-----.l.------'-------L:------:!o 5 10 15 20 25 30

Normalized axial displacement

Shih and Needlemank =0.02 _

k=0.2 _.--.-.--.

cry '1.26 21"3 in yield surface, k =0.2 --- --- --- ---

:30

e (b )
01
$ 25

l::

I"

""")

""0 20

/
Q)

.!::!
"iii !E 15
s-
O

,
Z ;

10

V
; :
~ :
~ :
;; ~

5

~/"i
0

0 0.05 0.1 0.15 0.2 0.25 0.:3 0.35 0.4

Normalized axial load

Shih and Needleman
k = 0.02 ~---------
k=0.2 -.-.-.-._-.

cry '1.26 21"3 in yield surface, k = 0.2 --- --- -- ---

:30

e
01
$ 25

l::
"
""")

""0 20
Q)

.!::!
"iii
E 15
s-
O

Z
10

5

0
0

( c)

5 10 15 20 25 :30

Normalized axial displacement

Fig. 6. Calibration of line spring model (Mode l), a/I = 0.75, 11 = 10.



4156 B. Skallerud

2r-------,.-------r-----..----------,=----~----__,
"t:l
t'Il

..Q

t'Il
'x
t'Il

"t:l
G)

.~
iii
E....
e
Z

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

( a )

Shih and Needleman
k = 0.02 -------­
k =0.2 -.-.-.-.-

00'-------1.5------,....0-----1...5------'20------2....5-------130

Normalized axial displacement

30

~ ( b )Cl
G) 25
C
"
-,
"t:l 20
G)

.~
iii
E 15....
e
Z Shih and Needleman

10 k = 0.02 --------
k=0.2 -.-.-.-.-

5

0
----_.-.:----

0 0.2 0.4 0.6 0.8 1.2

."
'f

1.4 1.6 1.8 2

Normalized axial load

Shih and Needleman

k = 0.02 -------­
k =0.2 -.-.-.-.-

30

~ ( C )
Cl ...
G) 25-l::

" i-,
"t:l 20 i
G)

.~ I ...
iii I

./ ..E 15 ....... Ie I
Z / i

i

i10 ; i

! i
i

/ ;'
i

5 ! !

I
/!

0
0 5 10 15 20 25 30

Normalized axial displacement

Fig. 7. Calibration of line spring model (Mode I). a/I = 0.25, n = 5.



Mixed mode I!II spring 4157

_. --_. _._. _._- _.--_. --_.-._.-­._-_.------

Shih and Needleman
k = 0.02 -------­
k =0.2 _.-.-._.-

1.4

"0
III

..Q 1.2

n;
//"------'x

III /

"0
,

Q) 1
.!::! 0.8 !
n; I

:
E ,
....
e 0.6
Z

0.4

0.2

0
0 5 10 15 20 25 30

Normalized axial displacement

30 r----.----.-----.-----.---""T"7----rr--.--r---~---~--_,

?1.81.61.41.20.80.60.40.2

( b )

Shih and Needleman
k =0.02 -------­
k =0.2 -.-.-._.-

j
!

i
i
!
!
!
/
I

!
)

/,'/

/
J------

o L-__-'-__="'-=O-=-::-::.:-:::L--_-:..~_-_-_--_-""'__===~ _'_____J... L____'_____'

o

5

20

15

10

25

"§
Cl
2
r::
'1....,
"0
Q)

.!::!
n;
E....
e

Z

Normalized axial load

( C )
Shih and Needleman

k =0.02
k =0.2

30

"§
Cl
Q) 25-r::
'1....,
"0 20
Q)

.!::!
n;
E 15....
e

Z
10

5

0
0

/
I

/
/ ,"

:'
:

/,
/// ././

/ ...
/ ,/

/ i; ,.-
/ ,/

/ ..-
/ ...

//'
l/
"...

5

i

10 15 20 25 30

Normalized axial displacement

Fig. 8. Calibration of line spring model (Mode I), a/I = 0.25, n = 10.



4158 B. Skallerud

----------------------------------~-----------------------------------

30252015

rv; 0 cry '1.26 21'13 in yield surface, k; 0.2 --­
rv ; 0.5 cry '1.26 21'13 in yield surface, k; 0.2 ----­
rv; 1.0 cr, 1.26 21'13 in yield surface, k; 0.2 - - - - --

10

"0
(a )ell

..Q
a; 0.8

'x
ell

"0
Q)

.J::! 0.6

a;
E
~ ---------0 /-
Z 0.4 /

.<~:....
0.2

0
0 5

Normalized axial displacement

rv; 0 cr, '1.26 21'13 in yield surface, k; 0.2 --­
rv; 0.5 cr, 1.26 21'13 in yield surface, k; 0.2 ----­
rv; 1.0 cr, 1.26 21'13 in yield surface, k ; 0.2 - - - - --

30

~ ( b )
Cl
oS 25

c:
"-,
"0 20
Q)

.J::!
a;
E 15
~

0
Z

10

5

0
0 0.2 0.4 0.6 0.8

Normalized axial load

rv; 0 cry ·1.26 2J..J3 yield surface, k; 0.2 --­
rv; 0.5 cr, 1,26 21'13 yield surface, k; 0.2 ----­
rv; 1.0 cry '1.26 2J..J3 yield surface, k; 0.2 - - - - --

30

~ ( c)
;:

h
Cl ,1

oS 25 "c: /~/"
/."-, i,/

"0 20 ;;Q)

~
,I,

ell /,
E 15

I
~

0
Z

10

.';-
,0

5

..,/;/
"

0
0 5 10 15 20 25 30

Normalized axial displacement

Fig. 9. Effect of shear force (Mode II), aft = 0.5, n = 10.



Mixed mode IIII spring 4159

load control, increasing the shear load has a substantial effect on the N-b and J-N behav­
iour. However, from Fig. 9c an interesting result emerges (similar results apply for alt = 0.25
and 0.75 also). It is observed that increasing the shear in a displacement controlled situation
does not lead to a significant increase in total J. This indicates that in displacement
controlled components, simpler line spring models may be employed. Considering eqn (11)
the interaction between the bending moment and shear is between linear and quadratic,
whereas for high axial load (small alt) and shear force, the interaction is quadratic. The
reason for the insensitivity in Jto Mode II may be explained to a large extent by considering
a ligament loaded in pure normal force and shear. Assume a linear plastic interaction
between N and V for simplicity, and perfectly plastic material.

N' V
f=----.!.::+----.!.::-I=O
. Np VI'

V = rv' N => N~ = CTyc/(I +rvv3) , V~ = rv' N;,

Using an associated flow rule, one obtains the relation between plastic extension and shear
deformation:

of "
~p = A-~- = ILl VI'

oV

=> ~p = v3bp

For a perfectly plastic material in displacement control, with self-similar crack growth, J is
given by:

Hence, for a hardening material and a slightly more complicated yield surface (eqn (11)),
the resulting J vs b shows a similar behaviour (Fig. 9c).

Comparison with FE results in Mode I
As there exist no tabulated results for edge cracked strips in combined Mode I and

Mode II loading, a FE study was carried out in order to have detailed solutions of such
loading modes for comparison with line spring results. First, the case analysed is the same
as that employed by Parks and White (1982) : a tension loaded edge cracked strip in plane
strain with alt = 0.5. Hence, the only bending moment in the ligament is due to the
eccentricity of N. The material model used for stress-strain behaviour in all simulations is
a trilinear one, with initial yield stress of 490 MPa, linear slope for CT < 700 MPa and
Gp < 0.1, followed by non-hardening behaviour. This material corresponds to a low hard­
ening material (n ;::::; 20). As the line spring model investigated herein is load driven, a small
plastic modulus of 0.01 of the initial plastic modulus is employed for plastic strains above
0.1.
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Figure 10 illustrates the static model for the continuum solution, employed in the
ABAQUS analyses (Hibbitt et al., 1992), using isoparametric 8-noded, plane strain finite
elements and the same material model for stress-strain as for the line spring. Note that the
bending moment M ll leads to pure Mode II deformation of the crack. The stress resultants
were applied by means of 17 nodal forces at each end. The element size in the ligament
region is 0.025 times the thickness. The FE model consisted of 1732 elements and about
10,000 degrees of freedom. Default convergence criteria were employed in the analyses,
e.g., for nodal forces the error was less than 0.005 at all nodes at convergent solution. A
part of the ligament region, denoted intense deformation zone by Shih and Needleman
(1984), consisted of approximately 20*40 elements, capturing the extension of the intense
strain fields approaching the slip line solution at the highest load levels. As pointed out by
Shih and Needleman (1984), if a deformation plastic material model is applied, then path
dependencies in the i-integral reflect inadequacies in the FE-meshes. This was checked in
the present study by first running some FE analyses with such a material model, resembling
the trilinear stress-strain curve. In all analyses 9 contours were utilized in the i-compu­
tations. First, a reduced integration (2X2 Gauss points) element was investigated, i.e. the
mesh in Fig. 10. The mesh in the ligament region consisted of rectangular elements with
aspect ratio close to one, and no collapsed nodes at the crack tip. The i-value for the first
ring of elements was disregarded. For the next eight rings the path dependency was less
than 0.01 at all load levels compared to the average value. The elastic value differed by 0.7
percent for aft = 0.5 compared to Tada et at. (1972), whereas for alt = 0.25 the difference
was even less. Additionally, the effect of using a focused mesh was investigated (this model
consisted of fewer elements than in the rectangular FE-mesh). For contained plasticity, the
difference in i for the two meshes was negligible. For load levels approaching limit load,
the rectangular FE-mesh yielded i-values approximately 20% lower than those for the
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focused mesh. The effect of interpolating the hydrostatic stress for nearly incompressible
material by means of a hybrid 8-noded element was negligible compared to applying the
reduced integration element. For these reasons the rectangular mesh of elements with
reduced integration was employed in the continuum model, as variations of magnitude
10% result both from different numerical integration schemes (Dodds, 1985) and exper­
imental scatter in critical J-values.

The axial displacement caused by the crack was obtained by subtracting bnocrack =
NL/E' t from the total displacement. Note that this correction presumes dominating elastic
behaviour of the material outside the ligament region.

Figure Ila shows the axial force vs axial displacement (normalized by (Jyt and (Jyt/E,
respectively) for different values of the k-factor and yield stress, see eqn (15). The com­
bination of (k = 0.2, 1.26*2/,j3(JJ corresponds well to the FE result, both for axial load
vs axial displacement, J vs axial load, and J vs axial displacement. The combination
(k = 0.02,2/J3(J") results in a too flexible line spring, and overpredicts J in terms of axial
load, but predicts acceptable values of J in terms of axial displacement. Note that the elastic
stiffness is well represented by the line spring for this elastic-plastic material (this stiffness
could not be assessed in the comparison to fully plastic estimations given above). The recent
investigation by Lee and Parks (1995) shows that accounting for the fact that the crack size
appears larger than the physical one due to the crack tip plastic zone, a very accurate
elastic-plastic transition is obtained by the line spring. This effect is not considered herein.

Comparison with FE behaviour in pure shear (Mode II)
The case of pure Mode II was also analyzed. Figure 12a shows the shear force vs shear

deformation for aft = 0.5. The FE shear deformation is taken as the difference in vertical
displacement between points A and B in Fig. 10. One observes that the line spring is too
stiff in the elastic-plastic transition for (k = 0.2, 1.26*2/,j3(Jy), but for increasing plasticity
the correspondence is excellent. It is well known that a Mode II crack tip plastic zone is
larger than a Mode I plastic zone at the same load level. Hence, applying a crack size that
accounts for the plastic zone would probably improve the elastic-plastic transition. The
combination (k = 0.02, 2/,j3(JJ is too flexible, but not unacceptable. Figure 12b shows the
J- V behaviour for the line spring and continuum model. The correspondence is good when
the effect of the crack on the stresses is accounted for (i.e., also employing the factor 1.26),
considering the simple way of accounting for shear in the line spring. Not accounting for
the stress elevation factor 1.26 leads to very conservative J line spring values. The J-~ results
are in excellent agreement with the continuum solution, Fig. 12c. This indicates that
applying the same constraint factor in Mode I and Mode II for this crack and material is
reasonable.

Comparison and FE results in combined axialforce, bending moment, and shear (Mode I and
II)

Figure 13 shows the case of a/ t = 0.5, with a shear force 10% of axial load, and a
factor 10 between bending moment and axial force, applied proportionally. Similar effects
as presented in earlier graphs are observed: softer N-b behaviour, overprediction in J-N,
and reasonable agreement in the J-b plots.

CONCLUDING REMARKS

Regarding efficiency, the advantages in a line spring based approach compared to solid
element analyses of cracked shell structures are obvious. However, several simplifications
are inherent in the model. Two main modelling aspects are important. First, in order to
represent the increased flexibility of the cracked shell, the shell stress resultants (N, M, V)
vs energy conjugate deformations in the line spring should be simulated with reasonable
accuracy. The lower bound yield surface utilized in the present study leads to softer
behaviour of the line spring in the plastic range compared to detailed plane strain FE
analyses, but the deviation is not unacceptable. When the yield stress used in the yield
surface accounts for the stress elevation due to the crack, i.e. multiplied by 1.26, the line
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spring response corresponds well with the continuum solutions. This factor may only be
applied for deep cracks (ait > 0.25). It should be noted that correcting the yield surface
yield stress with this factor results in a yield surface that should not be regarded as a true
lower bound solution.

In load controlled structures, the reduced stiffness of the line spring results in predicting
too large deformations, in displacement controlled structures this effect leads to prediction
of somewhat too low load levels. Considering the loading in the hot spot region in a tubular
joint, it behaves in displacement control for loads less than limit load. Hence should the
model under investigation here be applicable for load versus displacement simulations.

Second, the line spring model provides a method for calculating J-integrals in a
simplified way. Here, several inaccuracies may occur. As discussed in the model derivation
section, there are possibilities in improving the constraint factor m calculation. The mIl

factor should also be investigated further. For shallow cracks the relationship between
crack tip opening displacement and ligament deformations have to be improved (Lee and
Parks, 1993). The way the model is used in the present study, conservative crack tip opening
displacements are obtained.

For the geometries investigated in the present study, in most cases the line spring based
J was overpredicted in load control compared to the detailed FE results. In displacement
control J was overpredicted somewhat, but in reasonable agreement with the continuum
solutions. Inaccuracies in the elastic-plastic transition may be remedied by accounting for
the crack tip plastic zone effect (Lee and Parks, 1995).

Due to the high ductility of the steels employed in the offshore industry, significant
plasticity develops before any fracture initiation. Therefore, loss of a J-dominated stress
and strain field due to loss of constraint in plastic crack tip deformations may develop. If
this is true, then the basis for a J-based (one-parameter) fracture assessment disappears.
Although a J-dominated crack tip region may exist in mixed mode (Aoki et at., 1987),
the computations of J herein are based on self-similar crack growth. This may not be
representative for all materials, so there is a need for more research on mixed mode fracture
characteristics in order to determine fracture mechanisms and valid fracture initiation
parameters or damage evolution models. Ahmad et at. (1983) have obtained a correlation
between the critical J1 component in mixed mode 1/11 and the Mode I critical J. If such
criteria are valid, simple checks for crack criticality are possible.

The performance of the line spring model implemented in a shell FE program should
be studied in the future. In this respect, the shell formulation should account for finite
rotations (but small strains), as such deformations have significant effect on tubular joint
load versus deformation behaviour (Skallerud, 1995).
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